Загрузил lvv_vas

Цифровая схемотехника: Методические указания

1.
3
8
14
,
2
3
4
5
6
7
8
9
10
11
12
RSJKDT-
17
20
22
24
26
32
35
.
40
43
47
57
2
1.
.
:
.
.
:
1.
2.
3.
4.
5.
.
.
.
.
.
1.1
(
. conjunction &
.
),
.
.
-
:
y = x1
(x1
x 2)
x2 = x1 • x2
(1.1)
«1».
(1.1)
,
y
«1»
,
:
1.1.1
2
.
1.1.2
3
.
1.1.3
4
.
x1
0
0
1
1
x2
0
1
0
1
y
x1
0
0
0
0
1
1
1
1
x2
0
0
1
1
0
0
1
1
x3
0
1
0
1
0
1
0
1
y
x1
0
0
0
0
0
0
0
0
x2
0
0
0
0
1
1
1
1
x3
0
0
1
1
0
0
1
1
x4
0
1
0
1
0
1
0
1
y
x1
1
1
1
1
1
1
1
1
x2
0
0
0
0
1
1
1
1
x3
0
0
1
1
0
0
1
1
x4
0
1
0
1
0
1
0
1
y
3
1.2
(
V
(1.2)
x2)
1.2.1
1.2.2
1.2.3
),
-
.
x1
y = x1 V x2 = x1 + x2
. disjunction –
x2,
(1.2)
,
y
«1»,
(x1
«1».
2
3
4
.
x1
0
0
1
1
x2
0
1
0
1
y
x1
0
0
0
0
1
1
1
1
x2
0
0
1
1
0
0
1
1
x3
0
1
0
1
0
1
0
1
y
x1
0
0
0
0
0
0
0
0
x2
0
0
0
0
1
1
1
1
x3
0
0
1
1
0
0
1
1
x4
0
1
0
1
0
1
0
1
.
.
y
x1
1
1
1
1
1
1
1
1
x2
0
0
0
0
1
1
1
1
x3
0
0
1
1
0
0
1
1
x4
0
1
0
1
0
1
0
1
y
4
1.3
,
.
y = x
:
(1.3)
,
x,
y
.
1.3.1
.
x
0
1
1.4
y
2 ( 2),
x1
«
»,
x2
x2 = (x1 x 2) V ( x 1 x2)= (x1 • x 2) + ( x 1• x2)
(1.4)
(1.4)
,
y
«1»
x 2)
.
.
y = x1
(x1
1.4.1
1.4.2
2
2
2
4
,
.
x1
0
0
1
1
x2
0
1
0
1
y
x1
0
0
0
0
0
0
0
0
x2
0
0
0
0
1
1
1
1
x3
0
0
1
1
0
0
1
1
.
x4
0
1
0
1
0
1
0
1
y
x1
1
1
1
1
1
1
1
1
x2
0
0
0
0
1
1
1
1
x3
0
0
1
1
0
0
1
1
x4
0
1
0
1
0
1
0
1
y
5
1.5
),
,
.
y = x1 | x2 = x1 x 2
(x1
1.5.1
«|» (
x1 x2
x 2)
(1.5)
«1».
(1.5)
,
y
2
3
4
,
x2
0
1
0
1
y
.
x1
0
0
0
0
1
1
1
1
1.5.3
«0»
.
x1
0
0
1
1
1.5.2
-
x2
0
0
1
1
0
0
1
1
x3
0
1
0
1
0
1
0
1
y
.
x1
0
0
0
0
0
0
0
0
x2
0
0
0
0
1
1
1
1
x3
0
0
1
1
0
0
1
1
x4
0
1
0
1
0
1
0
1
y
x1
1
1
1
1
1
1
1
1
x2
0
0
0
0
1
1
1
1
x3
0
0
1
1
0
0
1
1
x4
0
1
0
1
0
1
0
1
y
6
1.6
,
(
.
y = x1 x2 = x1
x2
(1.6)
(1.6)
,
x1
y
),
-
x2
«0»,
(x1
x2)
«1».
1.6.1
1.6.2
1.6.3
2
3
4
.
x1
0
0
1
1
x2
0
1
0
1
y
x1
0
0
0
0
1
1
1
1
x2
0
0
1
1
0
0
1
1
x3
0
1
0
1
0
1
0
1
.
y
.
x1
0
0
0
0
0
0
0
0
x2
0
0
0
0
1
1
1
1
x3
0
0
1
1
0
0
1
1
x4
0
1
0
1
0
1
0
1
y
x1
1
1
1
1
1
1
1
1
x2
0
0
0
0
1
1
1
1
x3
0
0
1
1
0
0
1
1
x4
0
1
0
1
0
1
0
1
y
7
,
,
,
(1815-1864 .),
,
,
-
.
.
(1910 .),
1938 . .
.
.
,
«
»
«
0
»).
,
x1,x2,...,
»
«
f (x1,x2,…)
,
0
1(
«
,
»).
,
-
,
.
(
1
,
,
,
-
).
,
.
x,
(
),
–« »
.
,
),
«V»
«+» –
«•» – (
)
,
,
-
(
.
,
,
-
.
).
–
(
,
–
-
.
.
n,
2n,
– 4n.
,
,
. 1.1.
x1
x2
0
0
0
1
1
0
1
1
y1
1
1
0
0
y2
0
1
1
1
x1
y3
0
0
0
1
x1 x2
y4
1
0
0
0
x1
y5
1
1
1
0
x1 | x2
y6
0
1
1
0
x1
y7
1
0
0
1
x1 ~ x2
.
,
x1
x1
,
x2
,
x2
x1 x2
,
x2
x1
x1
,
x2
x1 x2
,
x2
,
-
x1 x2
x1 x2
x1 x2
x1 x2
1.1
8
:
1
1.
1
1.
1
0.
0.
)
1
(
1
(
)
.
(
)
1
(
)
-
.
(
. 1.2)
-
.
(
),
,
.
x1
x2
0
0
1
1
0
1
0
1
0
1
1
1
0
0
0
1
1
0
0
0
1
1
1
0
-
0
1
1
0
1
0
0
1
1.2
:
x1 x2 x2 x1 .
:
x1 ( x2 x3 ) ( x1 x2 ) x3 ,
x1 ( x2 x3 ) ( x1 x2 ) x3 .
:
x1 ( x2 x3 ) x1 x2 x1 x3 , x1 x2 x3 ( x1 x2 ) ( x1 x3 ) .
:
x x x ,
x x x .
:
x x 0,
x x 0.
:
x1 x2
x
x2 x1 ,
x .
:
x1
x1 ( x1
x2 )
x1 ,
x1 x2
x1
x2 ,
x1 x2 x1 x2 .
0 1:
x 0 x .
x 1 1.
x1+x2 x3=(x1+x2) (x1+x3)
:
x 0 0 ,
x 1 x ,
x1 x2
x1 .
.
-
(x1+x2) (x1+x3) = x1 x1+x1 x3+x1 x2+x2 x3 = x1+x1 x3+x1 x2+x2 x3 =
= x1(1+x3+x2)+x2 x3=x1+x2 x3.
.
:
9
x1 (x1+x2) = x1 x1+x1 x2 = x1+x1 x2 = x1 (1+x2) = x1.
.
-
,
,
,
,
,
y
y
x1
x2 ,
.
,
x2 .
x1
y
x1 x2 ,
, y
x1 x2 ,
.
,
-
.
,
,
.
,
.
,
.
(
)
,
-
.
:
,
«1»,
,
,
,
-
.
,
,
,
.
,
,
(
).
:
F ( A, B, C )
A B B C
A B C.
,
).
F ( A, B, C )
A B C
(
:
A B C
A B C.
)
,
«0»,
-
,
-
.
:
,
,
.
,
«1»,
,
.
),
(
-
.
:
F ( A, B, C ) ( A B C ) ( A B C ) ( A B C ).
,
,
,
.
.
,
,
,
0,
.
,
-
.
.
(
-
. 1.3).
:
F ( x1 , x2 )
x1 x2
x1 x2
x1 x2 .
(1.1)
:
10
F ( x1 , x2 )
x1 x2 .
(1.2)
.
1
2
0
0
1
1
0
1
0
1
F(x1,x2)
0
1
1
1
x1
0
0
1
1
x2
0
1
0
1
F(x1,x2)
0
0
0
1
1.3
:
,
,
,
1,
.
.
:
F ( x1 , x2 )
x1
x2 .
(1.3)
:
F ( x1 , x2 ) ( x1
1.2
x2 ) ( x1
x2 ) ( x1
1.3
.
1.4
.
,
x1 x2
( x1
(1.4)
x2 ).
,
.
,
1.1
1.3, 1.2
,
1.4
1.1
-
:
x1 x2
x1 x2
x1
x2 .
x2 ) ( x1
x2 ) ( x1
x2 )
x1 x2
1.1.
(x x
x x 1.
x)
x1 x2
x1 x2
x1 x2
x2 ( x1
x1 ) x1 ( x2
x1 x2
x1 x2
x2 )
x2 .
x1
x1 x2
x1 x2
1.4
F ( x1 , x2 ) ( x1
F ( x1 , x2 )
x2 ) ( x1
x1 x2
,
:
x2 ) ( x1
x1 x2
x1 x2 .
x1 x2
x1 x2
x2 ),
:
F ( x1 , x2 )
x1 ( x2
x1 x2
x2 )
x2 ( x1
x1 )
x1
x1 x2
x2 .
:
F ( x1 , x2 )
x1 x2 .
.
,
:
,
.
,
.
,
11
,
,
.
,
.
,
.
–
-
,
.
1.1
-
1.4.
1.1:
F ( x1, x2 )
x1 x2
x1 x2
x1 x2
.1, )
x1
x2 ,
x1 x2 , x1 x2 , x1 x2
.
)
)
. 1.
1.1 ( )
1.4:
F ( x1 , x2 ) ( x1
x2 ) ( x1
.1.7, )
x2 ) ( x1
,
x2 )
,
.
1.4 ( )
.
.
,
,
.
,
(
x1
x2
F(x1,x2)
0
0
0
0
1
1
1
0
1
1
1
0
)(
.
. 1.4).
1.4
:
F ( x1 , x2 )
x1 x2
(1.5)
x1 x2 .
:
F ( x1 , x2 ) ( x1
x2 ) ( x1
1.6
(1.6)
x2 ).
:
12
F ( x1 , x2 ) ( x1
(1.7)
x2 ) ( x1 x2 ).
)
)
. 2.
1.5 ( )
1.7 ( )
1.5
.
(
2
,
-
,
1.7
.2).
,
,
,
,
,
,
, ,
-
.
.
.
,
,
?
(
.3, )
1.6.
:
F ( x1 , x2 ) ( x1
x2 ) ( x1
x2 ) ,
F ( x1 , x2 ) ( x1
x2 ) ( x1
x2 )
(
.3, )
1.5,
-
:
F ( x1 , x2 )
x1 x2 x1 x2 ,
F ( x1 , x2 )
x1 x2 x1 x2
)
)
. 3.
( )
( )
13
.
–
,
(
.
)
-
,
.
: «0»
-
«1».
.
,
,
-
.
.
,
Q.
.
,
-
.
.
.
RS, D, T, JK
-
.
,
,
,
(
).
RS
,
–
S
-
(S)
(
R
(R).
-
).
D(
,
Delay -
)
.
,
-
.
T
.
,
-
.
JK
,
RS.
(J)
(K),
-
,
(J=K=1).
(
)
.
.
RST –
,
(
)
,
.
)
(
-
.
.
,
,
,
.
.
,
C(
Clock).
.
,
,
.
(
).
.
,
,
.
.
,
–
.
14
1–
:
)
RS-
; )
T-
D-
; )
; )
RS-
D-
; )
JK-
; )
.
.
-
,
–
.
.
.
-
,
.
-
.
,
,
–
.
«
»-
,
.
T.
MS (
- :
.
Master-Slave,
.
).
Q,
1.2 –
,
,
-
.
.
–
tSU–
.
,
(
tSU (Set-Up Time)
,
tH –
)
tH (Hold Time).
.
-
.
15
.
,
:
-
,
,
,«
-
,
».
.
-
,
.
,
,
.
,
-
.
16
2.
RS-
:
.
RS-
,
.
.
:
1.
2.
3.
RS-
.
.
.
4.
5.
.
.
RS-
.
(
) RS-
, -
. 1.1.
,
,
,
1.1,
.
,
S=1
R=0
(Q = 0);
(Q = 1);
S=0
.
,
S=R=1
S=R=0
.
R=1
-
.
(S = R= 0)
,
-
.
.
a)
2.1
S
R
Q
Q
0
1
0
1
0
0
1
1
Q
Q
1
0
0
0
1
0
1
0
)
RS
2.1.
RS-
)–
, )–
2.2
RS
17
RS-
.
RS-
. 2.3
-
.
RS-
,
R
S,
. 2.2
)
)
2.3
1
RS)–
, )–
R
0
0
1
1
0
0
1
1
S
0
1
0
1
0
1
0
1
C
0
0
0
0
0
0
0
0
0
0
0
0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
1
0
1
0
1
1
1
0
2.2.
2.4
RSRS
RS-
.
RS-
-
,
.
RS-
1
:
,
.
2.3, 3.1, 4.1, 5.1
t=0.2
.
2
,
n=001,
.
18
RS-
.2.5.
)
2.5
)
RS-
)–
,
)–
R
0
0
0
0
1
1
1
1
2.6
S
0
0
1
1
0
0
1
1
C
1
0
1
0
1
0
1
0
Q
Q
Q
Q
Q
Q
Q
Q
1
0
Q
Q
0
0
1
1
1
1
1
0
2.3.
RS
RS-
19
3.
:
JK-
JK-
.
.
,
-
.
:
1.
2.
3.
JK-
.
.
.
4.
5.
.
.
JK-
RSJ
S RSJ
,
:
-
K
.
.
K
R
RS-
J
-
.
K
.
K
J
. JK-
-
RS-
,
.
JKJKK
.
D-
.
,
1.
JK-
)
,
J
J
)
3.1
JK-
)–
,
)–
J
0
0
1
1
0
1
0
1
3.2
K
0
1
0
1
0
0
1
1
C
0
0
0
0
0
0
0
0
0
0
0
0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
1
0
0
1
Q
Q
1
0
3.1
JK -
JK –
20
)
3.3
)
JK-
)–
,
)–
J
0
0
0
0
1
1
1
1
3.4
K
0
0
1
1
0
0
1
1
C
1
0
1
0
1
0
1
0
Q
Q
Q
Q
Q
Q
Q
Q
0
1
Q
Q
1
0
Q
Q
Q
Q
0
1
3.2
JK -
JK -
21
4.
:
D-
D-
.
,
.
:
1.
2.
3.
D-
.
.
.
4.
5.
.
.
D-
,
. D-
1
D-
0.
,
.
D(
).
DD-
(
)
-
,
.
.
D-
-
, D. D-
RS-
JK-
,
. D-
-
.
)
)
4.1
)–
D,
)–
D
0
1
0
1
4.2
D-
C
0
0
0
0
Q
Q
Q
Q
Q
Q
0
1
1
0
0
0
4.1
D22
)
4.3
)
D-
)–
,
)–
D
0
0
1
1
4.4
C
1
0
1
0
Q
Q
Q
Q
0
1
Q
Q
1
0
4.2
D-
D-
23
5.
:
T-
T-
.
,
.
:
1.
2.
3.
T-
.
.
.
4.
5.
.
.
,
,
,
, D-
JK-
T.
JKJ K
J
.
T-
.
JK-
,
DQ
,
1.
.
D,
.
-
Q,
-
.
,
—
)
2
2.
,
,
)
5.1
T-
)–
,
)–
T
0
1
0
1
5.2
C
0
0
0
0
0
0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
5.1
T-
T24
)
5.3
)
T-
)–
,
)–
T
0
0
1
1
C
1
0
1
0
5.4
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
5.2
T-
T-
OUT0
OUT1
C3
R/
S/
C/
OUT1
OUT0
OUT0
J/
C2
IN0
IN1
T/
Q/
BIN
-
75
, 0.2
/1
-
K/
D/
./
6.
.
25
:
.
,
-
.
:
1.
2.
3.
.
.
.
4.
5.
.
.
–
.
,
,
.
,
,
:
,
.
,
,
,
.
,
,
-
.
.
(
)
,
(
)
-
.
.
-
,
.
.
,
-
.
.
(
(
)
-
).
-
(PISO),
.
(SIPO, Serial Input – Parallel Output),
(
)
.
.
,
,
.
,
.
D.
,
,
-
,
.
.
(
).
.
–
-
.
.
-
.
,
«
»
,
,
.
.
,
.
,
-
.
26
:
-
(
)
(
).
,
m
6.1
.
m-
.
4-
.
6.1
6.2
D3
0
1
1
D2
1
0
1
D1
0
1
0
D0
1
0
0
C
0
1
0
Q1
0
0
1
Q2
0
0
1
Q3
0
0
0
Q4
0
0
0
6.1
6.2
.
27
6.3
,
RG1
6.4
D3
0
1
1
0
D2
1
0
1
1
6.2
RG2
,
D1
0
1
0
0
D0
1
0
0
1
C1
0
1
0
0
C2
0
0
1
0
Q7
0
0
1
1
,
RG1
RG1
Q6 Q5
0
0
0
0
1
0
1
0
Q4
0
0
0
0
Q3
0
0
0
1
RG2
Q2 Q1
0
0
0
0
0
0
1
0
RG1
RG2
Q0
0
0
0
0
RG1
RG2
RG2
6.3
28
6.5
,
6.6
C
1
0
1
0
1
0
1
0
Q7
1
0
0
0
0
1
1
1
,
Q6
1
1
1
0
0
0
0
1
204 (110011002)
Q5 Q4 Q3 Q2
0
0
1
1
1
0
0
1
1
0
0
1
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
0
0
0
1
1
6.3
,
Q1
0
1
1
1
1
0
0
0
Q0
0
0
0
1
1
1
1
0
-
204 (110011002)
6.4
29
6.7
,
6.8
,
-
204 (110011002)
C
1
0
1
0
1
0
1
0
Q7
1
1
1
0
0
0
0
1
Q6
1
0
0
0
0
1
1
1
Q5
0
0
0
1
1
1
1
0
Q4
0
1
1
1
1
0
0
0
6.4
204 (110011002)
Q3
1
1
1
0
0
0
0
1
Q2
1
0
0
0
0
1
1
1
,
Q1
0
0
0
1
1
1
1
0
Q0
0
1
1
1
1
0
0
0
-
30
6.9
6.10
C1
0
1
0
1
0
1
0
1
C2
0
0
1
0
1
0
1
0
Q7
1
1
0
0
0
0
0
0
RG1
Q6 Q5
1
0
1
0
1
1
1
1
0
1
0
1
0
0
0
0
6.5
Q4
0
0
0
0
1
1
1
1
Q3
0
0
0
0
0
0
0
0
RG2
Q2 Q1
0
0
0
0
0
0
1
1
1
1
0
1
0
1
0
0
Q0
0
0
0
0
0
1
1
1
-
11002
31
OUT7
OUT6
OUT5
OUT4
OUT3
OUT2
OUT1
OUT0
C2
C3
C2
C3
IN7
IN6
IN5
IN4
IN3
IN2
IN1
IN0
D7/
D6/
D5/
D4/
D3/
D2/
D1/
D0/
R/
C/
C1/
C2/
Q7/
Q6/
Q5/
Q4/
Q3/
Q2/
Q1/
Q0/
7
6
5
4
3
2
1
0
HEX
-
/1
1
2
7
6
5
4
3
2
1
0
32
7
:
.
,
.
:
1.
2.
3.
.
.
.
4.
5.
.
.
.
-
,
(«1»)
.
n
n
.
7.1
,
,
.
2n.
,
2n,
,
.
2n
4
33
X3
0
0
0
1
X2
0
0
1
0
7.2
X1
0
1
0
0
X0
1
0
0
0
Y1
0
0
1
1
Y0
0
1
0
1
7.1
,
,
,
-
.
-
,
1,
0.
2n
2
,
n-
n
1
.
,
(
),
.
7.3
2
34
X1
0
0
1
1
7.4
X0
0
1
0
1
Y3
0
0
0
1
Y2
0
0
1
0
Y1
0
1
0
0
Y0
1
0
0
0
7.2
35
8
.
:
.
,
-
.
:
1.
2.
3.
.
.
.
4.
5.
.
.
,
.
,
.
:
,
,
,
.
2n
,
n-
,
n,
2n.
2n,
-
,
.
8.1 –
.
.
.
16
,
-
.
8.2.
.
,
–
-
.
36
8.2 –
.
8.3
37
X3
0
0
0
1
8.4
X2
0
0
1
0
X1
0
1
0
0
X0
1
0
0
0
A1
0
0
1
1
A0
0
1
0
1
Y
1
1
1
1
8.1
38
,
.
2n,
-
2n
,n
.
,
.
8.5 –
.
.
.
,
.
-
–
,
(
8.6
).
.
39
8.7
.
X
1
1
1
1
8.8
A1
0
0
1
1
A0
0
1
0
1
Y3
0
0
0
1
Y2
0
0
1
0
Y1
0
1
0
0
Y0
1
0
0
0
8.2
40
9
.
:
.
,
-
.
:
1.
2.
3.
.
.
.
4.
5.
.
.
.
,
,
.).
,
,
,
.
2
,
(
,
5(
),
,
.
.
–
,
-
.
,
-
.
,
,
,
,
.
,
,
.
–
-
.
.
9.1.
,
,
,
-
.
.
9.1 –
.
41
9.2
.
9.3
X3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Y3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Y2
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
Y1
0
0
1
1
0
0
1
1
1
1
0
0
1
1
0
0
Y0
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
9.1
42
,
:
.
;
,
:
-
.
,
.
.
9.4
.
X2
0
0
0
0
1
1
1
1
9.5
X1
0
0
1
1
0
0
1
1
X0
0
1
0
1
0
1
0
1
Y2
0
0
0
0
1
1
1
1
Y1
0
0
1
1
1
1
0
0
Y0
0
1
1
0
0
1
1
0
9.2
43
10
.
:
.
,
-
.
:
1.
2.
3.
.
.
.
4.
5.
.
.
.
-
,
,
.
.
:
A=B –
A>B –
A<B –
;
;
.
10.1
.
(
,
)
.
,
.
.
:
A=B = a b ab ;
A>B = a b ;
A<B = a b ;
44
10.2
10.3
A
0
0
1
1
B
0
1
0
1
A>B A=B A<B
0
1
0
0
0
1
1
0
0
0
1
0
10.1
45
10.4
10.5
A1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
B1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
B0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A>B A=B A<B
0
1
0
0
0
1
0
0
1
0
0
1
1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
1
0
0
0
1
0
0
0
1
1
0
0
1
0
0
1
0
0
0
1
0
10.2
46
,
,
.
-
B3-B0 ,
.
B
:A+(-B)=A+B
),
,
.
10.6
OUT7
OUT6
OUT5
OUT4
OUT3
OUT2
OUT1
OUT0
IN0
IN1
IN2
B3/
B2/
B1/
B0/
A3/
A2/
A1/
A0/
32
22
12
02
31
21
11
01
A>B
A=B
A<B
HEX
-
-
47
11
.
:
.
,
-
.
:
1.
2.
3.
.
.
.
4.
5.
.
.
,
.
,
. .
,
.
.
,
,
.
(
).
,
–
.
,
–
-
,
.
(
).
-
.
,
-
.
.
,
,
«1
N»
.
(
)
(
),
(
).
.
,
.
,
-
.
:
;
.
–
,
-
.
(
),
-
fmax.
(
)
,
J=K=1
Qn-1Qn-2…Q0,
JK,
.
.
,
M=2n,
n–
(
,
,
-
0, 1, 2, 3, …, M-1).
48
.
,
.
-1.
–
,
,
-
.
: 0101010101… .
001100110011…. .
: 0000111100001111…
,
.
,
,
.
.
,
,
,
-
.
,
.
-
,
,
,
.
,
.
1-0,
–
0-1.
,
.
,
.
,
-
.
,
.
«
».
,
.
.
-
.
2,
.
,
,
.
n=round(log1M),
round –
.
2n.
.
2n
,
=L
(
)
-
.
,
-
.
,
,
.
.
,
-
.
,
-
.
,
,
.
,
,
.
.
-1.
.
,
.
.
49
,
)
.
.
«
»,
(
).
.
,
.
.
.
,
,
-
.
50
11.1
8
.
11.2
8
.
-
0
1
2
3
4
5
…
250
251
252
253
254
255
256
257
258
Q7
0
0
0
0
0
0
…
1
1
1
1
1
1
0
0
0
Q6
0
0
0
0
0
0
…
1
1
1
1
1
1
0
0
0
Q5
0
0
0
0
0
0
…
1
1
1
1
1
1
0
0
0
11.1
Q4
0
0
0
0
0
0
…
1
1
1
1
1
1
0
0
0
Q3
0
0
0
0
0
0
…
1
1
1
1
1
1
0
0
0
8
Q2
0
0
0
0
1
1
…
0
0
1
1
1
1
0
0
0
Q1
0
0
1
1
0
0
…
1
1
0
0
1
1
0
0
1
Q0
0
1
0
1
0
1
…
0
1
0
1
0
1
0
1
0
-
.
51
11.3
8
.
11.4
8
.
-
0
1
2
3
4
5
…
250
251
252
253
254
255
256
257
258
Q7
0
1
1
1
1
1
…
0
0
0
0
0
0
1
1
1
Q6
0
1
1
1
1
1
…
0
0
0
0
0
0
1
1
1
Q5
0
1
1
1
1
1
…
0
0
0
0
0
0
1
1
1
11.2
Q4
0
1
1
1
1
1
…
0
0
0
0
0
0
1
1
1
Q3
0
1
1
1
1
1
…
0
0
0
0
0
0
1
1
1
8
Q2
0
1
1
1
1
0
…
1
1
0
0
0
0
1
1
1
Q1
0
1
1
0
0
1
…
0
0
1
1
0
0
1
1
0
Q0
0
1
0
1
0
1
…
1
0
1
0
1
0
1
0
1
-
.
52
=150(0-149).
– 8 (2 =256),
8
,
-
8
,
150,
150,
,
0,
.
,
150 (100101102)
R
-
«0».
11.5
11.6
=150
=150
-
0
1
2
3
4
5
…
147
148
149
150
151
152
153
154
155
Q7
0
0
0
0
0
0
…
1
1
1
0
0
0
0
0
0
Q6
0
0
0
0
0
0
…
0
0
0
0
0
0
0
0
0
Q5
0
0
0
0
0
0
…
0
0
0
0
0
0
0
0
0
Q4
0
0
0
0
0
0
…
1
1
1
0
0
0
0
0
0
Q3
0
0
0
0
0
0
…
0
0
0
0
0
0
0
0
0
Q2
0
0
0
0
1
1
…
0
1
1
0
0
0
0
1
1
Q1
0
0
1
1
0
0
…
1
0
0
0
0
1
1
0
0
Q0
0
1
0
1
0
1
…
1
0
1
0
1
0
1
0
1
11.3
=150
53
=150(150-1).
– 8 (2 =256),
8
,
-
8
,
,
150 (100101102),
S
,
0
0 (000000002)
.
7,4,2,1
150,
R
,
6,5,3,0
=150
,
-
«1»,
11.7
11.8
,
=150
-
0
1
2
3
4
5
…
147
148
149
150
151
152
153
154
155
Q7
1
1
1
1
1
1
…
0
0
0
1
1
1
1
1
1
Q6
0
0
0
0
0
0
…
0
0
0
0
0
0
0
0
0
Q5
0
0
0
0
0
0
…
0
0
0
0
0
0
0
0
0
Q4
1
1
1
1
1
1
…
0
0
0
1
1
1
1
1
1
Q3
0
0
0
0
0
0
…
0
0
0
0
0
0
0
0
0
Q2
1
1
1
0
0
0
…
0
0
0
1
1
1
0
0
0
Q1
1
0
0
1
1
0
…
1
1
0
1
0
0
1
1
0
Q0
0
1
0
1
0
1
…
1
0
1
0
1
0
1
0
1
11.4
=150
54
.
.
,
,
-
.
(m=8),
16
,
.
,
.
2m (m m-
)
.
“D”
,
,
-
.
11.9.
D,
“D”
“0”,
. Q0=Q1=…=Q7.
,
.
“1”.
“1”,
-
,
“1”.
,
“0”
“0”.
“D”
“1”.
,
.
“
11.9
-
,
”,
“
”.
8
55
11.10
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Q7
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
11.5
8
Q6
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
Q5
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
Q4
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
Q3
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
Q2
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
Q1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
Q0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
8
56
11.11
C2
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
Q2
0
1
1
1
1
0
0
0
Q1
0
1
1
0
0
1
1
0
Q0
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
)
Q2
0
0
0
0
1
1
1
1
Q1
0
0
1
1
0
0
1
1
Q0
0
1
0
1
0
1
0
1
)
11.5
2=0 (
2=1 (
)
)
C2
0
1
1
1
1
1
1
1
)
)
C3
C1
C2
IN7
IN6
IN5
IN4
IN3
IN2
IN1
IN0
R/
C/
Q7/
Q6/
Q5/
Q4/
Q3/
Q2/
Q1/
Q0/
-
/1..127
7
6
5
4
3
2
1
0
57
12
.
:
.
,
-
.
:
1.
2.
3.
.
.
.
4.
5.
.
.
,
-
,
.
.
,
,
.
.
,
12.1 )
:
«1»
-
a
b
.
a + b,
-
,
(Ci) :
(C)
)
12.1 –
(S)
«1»
-
.
)
)
)
«1»
.
-
«1»
.
.
(
12.1 )).
-
.
,
,
.
.
,
-
,
,
,
.
,
58
,
,
:
,
0
-
9.
12.2
A
0
0
1
1
0
0
1
1
12.3
B
0
1
0
1
0
1
0
1
Pi
0
0
0
0
1
1
1
1
S
0
1
1
0
1
0
0
1
P
0
0
0
1
0
1
1
1
12.1
59
12.4
12.5
OUT7
OUT6
OUT5
OUT4
OUT3
OUT2
OUT1
OUT0
IN0
IN1
IN2
IN3
IN4
B3/
B2/
B1/
B0/
A3/
A2/
A1/
A0/
32
22
12
02
31
21
11
01
S1
S2
S3
S4
S5
HEX
-
-
60
61