1. 3 8 14 , 2 3 4 5 6 7 8 9 10 11 12 RSJKDT- 17 20 22 24 26 32 35 . 40 43 47 57 2 1. . : . . : 1. 2. 3. 4. 5. . . . . . 1.1 ( . conjunction & . ), . . - : y = x1 (x1 x 2) x2 = x1 • x2 (1.1) «1». (1.1) , y «1» , : 1.1.1 2 . 1.1.2 3 . 1.1.3 4 . x1 0 0 1 1 x2 0 1 0 1 y x1 0 0 0 0 1 1 1 1 x2 0 0 1 1 0 0 1 1 x3 0 1 0 1 0 1 0 1 y x1 0 0 0 0 0 0 0 0 x2 0 0 0 0 1 1 1 1 x3 0 0 1 1 0 0 1 1 x4 0 1 0 1 0 1 0 1 y x1 1 1 1 1 1 1 1 1 x2 0 0 0 0 1 1 1 1 x3 0 0 1 1 0 0 1 1 x4 0 1 0 1 0 1 0 1 y 3 1.2 ( V (1.2) x2) 1.2.1 1.2.2 1.2.3 ), - . x1 y = x1 V x2 = x1 + x2 . disjunction – x2, (1.2) , y «1», (x1 «1». 2 3 4 . x1 0 0 1 1 x2 0 1 0 1 y x1 0 0 0 0 1 1 1 1 x2 0 0 1 1 0 0 1 1 x3 0 1 0 1 0 1 0 1 y x1 0 0 0 0 0 0 0 0 x2 0 0 0 0 1 1 1 1 x3 0 0 1 1 0 0 1 1 x4 0 1 0 1 0 1 0 1 . . y x1 1 1 1 1 1 1 1 1 x2 0 0 0 0 1 1 1 1 x3 0 0 1 1 0 0 1 1 x4 0 1 0 1 0 1 0 1 y 4 1.3 , . y = x : (1.3) , x, y . 1.3.1 . x 0 1 1.4 y 2 ( 2), x1 « », x2 x2 = (x1 x 2) V ( x 1 x2)= (x1 • x 2) + ( x 1• x2) (1.4) (1.4) , y «1» x 2) . . y = x1 (x1 1.4.1 1.4.2 2 2 2 4 , . x1 0 0 1 1 x2 0 1 0 1 y x1 0 0 0 0 0 0 0 0 x2 0 0 0 0 1 1 1 1 x3 0 0 1 1 0 0 1 1 . x4 0 1 0 1 0 1 0 1 y x1 1 1 1 1 1 1 1 1 x2 0 0 0 0 1 1 1 1 x3 0 0 1 1 0 0 1 1 x4 0 1 0 1 0 1 0 1 y 5 1.5 ), , . y = x1 | x2 = x1 x 2 (x1 1.5.1 «|» ( x1 x2 x 2) (1.5) «1». (1.5) , y 2 3 4 , x2 0 1 0 1 y . x1 0 0 0 0 1 1 1 1 1.5.3 «0» . x1 0 0 1 1 1.5.2 - x2 0 0 1 1 0 0 1 1 x3 0 1 0 1 0 1 0 1 y . x1 0 0 0 0 0 0 0 0 x2 0 0 0 0 1 1 1 1 x3 0 0 1 1 0 0 1 1 x4 0 1 0 1 0 1 0 1 y x1 1 1 1 1 1 1 1 1 x2 0 0 0 0 1 1 1 1 x3 0 0 1 1 0 0 1 1 x4 0 1 0 1 0 1 0 1 y 6 1.6 , ( . y = x1 x2 = x1 x2 (1.6) (1.6) , x1 y ), - x2 «0», (x1 x2) «1». 1.6.1 1.6.2 1.6.3 2 3 4 . x1 0 0 1 1 x2 0 1 0 1 y x1 0 0 0 0 1 1 1 1 x2 0 0 1 1 0 0 1 1 x3 0 1 0 1 0 1 0 1 . y . x1 0 0 0 0 0 0 0 0 x2 0 0 0 0 1 1 1 1 x3 0 0 1 1 0 0 1 1 x4 0 1 0 1 0 1 0 1 y x1 1 1 1 1 1 1 1 1 x2 0 0 0 0 1 1 1 1 x3 0 0 1 1 0 0 1 1 x4 0 1 0 1 0 1 0 1 y 7 , , , (1815-1864 .), , , - . . (1910 .), 1938 . . . . , « » « 0 »). , x1,x2,..., » « f (x1,x2,…) , 0 1( « , »). , - , . ( 1 , , , - ). , . x, ( ), –« » . , ), «V» «+» – «•» – ( ) , , - ( . , , - . ). – ( , – - . . n, 2n, – 4n. , , . 1.1. x1 x2 0 0 0 1 1 0 1 1 y1 1 1 0 0 y2 0 1 1 1 x1 y3 0 0 0 1 x1 x2 y4 1 0 0 0 x1 y5 1 1 1 0 x1 | x2 y6 0 1 1 0 x1 y7 1 0 0 1 x1 ~ x2 . , x1 x1 , x2 , x2 x1 x2 , x2 x1 x1 , x2 x1 x2 , x2 , - x1 x2 x1 x2 x1 x2 x1 x2 1.1 8 : 1 1. 1 1. 1 0. 0. ) 1 ( 1 ( ) . ( ) 1 ( ) - . ( . 1.2) - . ( ), , . x1 x2 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 - 0 1 1 0 1 0 0 1 1.2 : x1 x2 x2 x1 . : x1 ( x2 x3 ) ( x1 x2 ) x3 , x1 ( x2 x3 ) ( x1 x2 ) x3 . : x1 ( x2 x3 ) x1 x2 x1 x3 , x1 x2 x3 ( x1 x2 ) ( x1 x3 ) . : x x x , x x x . : x x 0, x x 0. : x1 x2 x x2 x1 , x . : x1 x1 ( x1 x2 ) x1 , x1 x2 x1 x2 , x1 x2 x1 x2 . 0 1: x 0 x . x 1 1. x1+x2 x3=(x1+x2) (x1+x3) : x 0 0 , x 1 x , x1 x2 x1 . . - (x1+x2) (x1+x3) = x1 x1+x1 x3+x1 x2+x2 x3 = x1+x1 x3+x1 x2+x2 x3 = = x1(1+x3+x2)+x2 x3=x1+x2 x3. . : 9 x1 (x1+x2) = x1 x1+x1 x2 = x1+x1 x2 = x1 (1+x2) = x1. . - , , , , , y y x1 x2 , . , x2 . x1 y x1 x2 , , y x1 x2 , . , - . , , . , . , . ( ) , - . : , «1», , , , - . , , , . , , ( ). : F ( A, B, C ) A B B C A B C. , ). F ( A, B, C ) A B C ( : A B C A B C. ) , «0», - , - . : , , . , «1», , . ), ( - . : F ( A, B, C ) ( A B C ) ( A B C ) ( A B C ). , , , . . , , , 0, . , - . . ( - . 1.3). : F ( x1 , x2 ) x1 x2 x1 x2 x1 x2 . (1.1) : 10 F ( x1 , x2 ) x1 x2 . (1.2) . 1 2 0 0 1 1 0 1 0 1 F(x1,x2) 0 1 1 1 x1 0 0 1 1 x2 0 1 0 1 F(x1,x2) 0 0 0 1 1.3 : , , , 1, . . : F ( x1 , x2 ) x1 x2 . (1.3) : F ( x1 , x2 ) ( x1 1.2 x2 ) ( x1 x2 ) ( x1 1.3 . 1.4 . , x1 x2 ( x1 (1.4) x2 ). , . , 1.1 1.3, 1.2 , 1.4 1.1 - : x1 x2 x1 x2 x1 x2 . x2 ) ( x1 x2 ) ( x1 x2 ) x1 x2 1.1. (x x x x 1. x) x1 x2 x1 x2 x1 x2 x2 ( x1 x1 ) x1 ( x2 x1 x2 x1 x2 x2 ) x2 . x1 x1 x2 x1 x2 1.4 F ( x1 , x2 ) ( x1 F ( x1 , x2 ) x2 ) ( x1 x1 x2 , : x2 ) ( x1 x1 x2 x1 x2 . x1 x2 x1 x2 x2 ), : F ( x1 , x2 ) x1 ( x2 x1 x2 x2 ) x2 ( x1 x1 ) x1 x1 x2 x2 . : F ( x1 , x2 ) x1 x2 . . , : , . , . , 11 , , . , . , . – - , . 1.1 - 1.4. 1.1: F ( x1, x2 ) x1 x2 x1 x2 x1 x2 .1, ) x1 x2 , x1 x2 , x1 x2 , x1 x2 . ) ) . 1. 1.1 ( ) 1.4: F ( x1 , x2 ) ( x1 x2 ) ( x1 .1.7, ) x2 ) ( x1 , x2 ) , . 1.4 ( ) . . , , . , ( x1 x2 F(x1,x2) 0 0 0 0 1 1 1 0 1 1 1 0 )( . . 1.4). 1.4 : F ( x1 , x2 ) x1 x2 (1.5) x1 x2 . : F ( x1 , x2 ) ( x1 x2 ) ( x1 1.6 (1.6) x2 ). : 12 F ( x1 , x2 ) ( x1 (1.7) x2 ) ( x1 x2 ). ) ) . 2. 1.5 ( ) 1.7 ( ) 1.5 . ( 2 , - , 1.7 .2). , , , , , , , , - . . . , , ? ( .3, ) 1.6. : F ( x1 , x2 ) ( x1 x2 ) ( x1 x2 ) , F ( x1 , x2 ) ( x1 x2 ) ( x1 x2 ) ( .3, ) 1.5, - : F ( x1 , x2 ) x1 x2 x1 x2 , F ( x1 , x2 ) x1 x2 x1 x2 ) ) . 3. ( ) ( ) 13 . – , ( . ) - , . : «0» - «1». . , , - . . , Q. . , - . . . RS, D, T, JK - . , , , ( ). RS , – S - (S) ( R (R). - ). D( , Delay - ) . , - . T . , - . JK , RS. (J) (K), - , (J=K=1). ( ) . . RST – , ( ) , . ) ( - . . , , , . . , C( Clock). . , , . ( ). . , , . . , – . 14 1– : ) RS- ; ) T- D- ; ) ; ) RS- D- ; ) JK- ; ) . . - , – . . . - , . - . , , – . « »- , . T. MS ( - : . Master-Slave, . ). Q, 1.2 – , , - . . – tSU– . , ( tSU (Set-Up Time) , tH – ) tH (Hold Time). . - . 15 . , : - , , ,« - , ». . - , . , , . , - . 16 2. RS- : . RS- , . . : 1. 2. 3. RS- . . . 4. 5. . . RS- . ( ) RS- , - . 1.1. , , , 1.1, . , S=1 R=0 (Q = 0); (Q = 1); S=0 . , S=R=1 S=R=0 . R=1 - . (S = R= 0) , - . . a) 2.1 S R Q Q 0 1 0 1 0 0 1 1 Q Q 1 0 0 0 1 0 1 0 ) RS 2.1. RS- )– , )– 2.2 RS 17 RS- . RS- . 2.3 - . RS- , R S, . 2.2 ) ) 2.3 1 RS)– , )– R 0 0 1 1 0 0 1 1 S 0 1 0 1 0 1 0 1 C 0 0 0 0 0 0 0 0 0 0 0 0 Q Q Q Q Q Q Q Q Q Q Q Q 1 0 1 0 1 1 1 0 2.2. 2.4 RSRS RS- . RS- - , . RS- 1 : , . 2.3, 3.1, 4.1, 5.1 t=0.2 . 2 , n=001, . 18 RS- .2.5. ) 2.5 ) RS- )– , )– R 0 0 0 0 1 1 1 1 2.6 S 0 0 1 1 0 0 1 1 C 1 0 1 0 1 0 1 0 Q Q Q Q Q Q Q Q 1 0 Q Q 0 0 1 1 1 1 1 0 2.3. RS RS- 19 3. : JK- JK- . . , - . : 1. 2. 3. JK- . . . 4. 5. . . JK- RSJ S RSJ , : - K . . K R RS- J - . K . K J . JK- - RS- , . JKJKK . D- . , 1. JK- ) , J J ) 3.1 JK- )– , )– J 0 0 1 1 0 1 0 1 3.2 K 0 1 0 1 0 0 1 1 C 0 0 0 0 0 0 0 0 0 0 0 0 Q Q Q Q Q Q Q Q Q Q Q Q 1 0 0 1 Q Q 1 0 3.1 JK - JK – 20 ) 3.3 ) JK- )– , )– J 0 0 0 0 1 1 1 1 3.4 K 0 0 1 1 0 0 1 1 C 1 0 1 0 1 0 1 0 Q Q Q Q Q Q Q Q 0 1 Q Q 1 0 Q Q Q Q 0 1 3.2 JK - JK - 21 4. : D- D- . , . : 1. 2. 3. D- . . . 4. 5. . . D- , . D- 1 D- 0. , . D( ). DD- ( ) - , . . D- - , D. D- RS- JK- , . D- - . ) ) 4.1 )– D, )– D 0 1 0 1 4.2 D- C 0 0 0 0 Q Q Q Q Q Q 0 1 1 0 0 0 4.1 D22 ) 4.3 ) D- )– , )– D 0 0 1 1 4.4 C 1 0 1 0 Q Q Q Q 0 1 Q Q 1 0 4.2 D- D- 23 5. : T- T- . , . : 1. 2. 3. T- . . . 4. 5. . . , , , , D- JK- T. JKJ K J . T- . JK- , DQ , 1. . D, . - Q, - . , — ) 2 2. , , ) 5.1 T- )– , )– T 0 1 0 1 5.2 C 0 0 0 0 0 0 Q Q Q Q Q Q Q Q Q Q 5.1 T- T24 ) 5.3 ) T- )– , )– T 0 0 1 1 C 1 0 1 0 5.4 Q Q Q Q Q Q Q Q Q Q 5.2 T- T- OUT0 OUT1 C3 R/ S/ C/ OUT1 OUT0 OUT0 J/ C2 IN0 IN1 T/ Q/ BIN - 75 , 0.2 /1 - K/ D/ ./ 6. . 25 : . , - . : 1. 2. 3. . . . 4. 5. . . – . , , . , , : , . , , , . , , - . . ( ) , ( ) - . . - , . . , - . . ( ( ) - ). - (PISO), . (SIPO, Serial Input – Parallel Output), ( ) . . , , . , . D. , , - , . . ( ). . – - . . - . , « » , , . . , . , - . 26 : - ( ) ( ). , m 6.1 . m- . 4- . 6.1 6.2 D3 0 1 1 D2 1 0 1 D1 0 1 0 D0 1 0 0 C 0 1 0 Q1 0 0 1 Q2 0 0 1 Q3 0 0 0 Q4 0 0 0 6.1 6.2 . 27 6.3 , RG1 6.4 D3 0 1 1 0 D2 1 0 1 1 6.2 RG2 , D1 0 1 0 0 D0 1 0 0 1 C1 0 1 0 0 C2 0 0 1 0 Q7 0 0 1 1 , RG1 RG1 Q6 Q5 0 0 0 0 1 0 1 0 Q4 0 0 0 0 Q3 0 0 0 1 RG2 Q2 Q1 0 0 0 0 0 0 1 0 RG1 RG2 Q0 0 0 0 0 RG1 RG2 RG2 6.3 28 6.5 , 6.6 C 1 0 1 0 1 0 1 0 Q7 1 0 0 0 0 1 1 1 , Q6 1 1 1 0 0 0 0 1 204 (110011002) Q5 Q4 Q3 Q2 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 6.3 , Q1 0 1 1 1 1 0 0 0 Q0 0 0 0 1 1 1 1 0 - 204 (110011002) 6.4 29 6.7 , 6.8 , - 204 (110011002) C 1 0 1 0 1 0 1 0 Q7 1 1 1 0 0 0 0 1 Q6 1 0 0 0 0 1 1 1 Q5 0 0 0 1 1 1 1 0 Q4 0 1 1 1 1 0 0 0 6.4 204 (110011002) Q3 1 1 1 0 0 0 0 1 Q2 1 0 0 0 0 1 1 1 , Q1 0 0 0 1 1 1 1 0 Q0 0 1 1 1 1 0 0 0 - 30 6.9 6.10 C1 0 1 0 1 0 1 0 1 C2 0 0 1 0 1 0 1 0 Q7 1 1 0 0 0 0 0 0 RG1 Q6 Q5 1 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 6.5 Q4 0 0 0 0 1 1 1 1 Q3 0 0 0 0 0 0 0 0 RG2 Q2 Q1 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 Q0 0 0 0 0 0 1 1 1 - 11002 31 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 OUT0 C2 C3 C2 C3 IN7 IN6 IN5 IN4 IN3 IN2 IN1 IN0 D7/ D6/ D5/ D4/ D3/ D2/ D1/ D0/ R/ C/ C1/ C2/ Q7/ Q6/ Q5/ Q4/ Q3/ Q2/ Q1/ Q0/ 7 6 5 4 3 2 1 0 HEX - /1 1 2 7 6 5 4 3 2 1 0 32 7 : . , . : 1. 2. 3. . . . 4. 5. . . . - , («1») . n n . 7.1 , , . 2n. , 2n, , . 2n 4 33 X3 0 0 0 1 X2 0 0 1 0 7.2 X1 0 1 0 0 X0 1 0 0 0 Y1 0 0 1 1 Y0 0 1 0 1 7.1 , , , - . - , 1, 0. 2n 2 , n- n 1 . , ( ), . 7.3 2 34 X1 0 0 1 1 7.4 X0 0 1 0 1 Y3 0 0 0 1 Y2 0 0 1 0 Y1 0 1 0 0 Y0 1 0 0 0 7.2 35 8 . : . , - . : 1. 2. 3. . . . 4. 5. . . , . , . : , , , . 2n , n- , n, 2n. 2n, - , . 8.1 – . . . 16 , - . 8.2. . , – - . 36 8.2 – . 8.3 37 X3 0 0 0 1 8.4 X2 0 0 1 0 X1 0 1 0 0 X0 1 0 0 0 A1 0 0 1 1 A0 0 1 0 1 Y 1 1 1 1 8.1 38 , . 2n, - 2n ,n . , . 8.5 – . . . , . - – , ( 8.6 ). . 39 8.7 . X 1 1 1 1 8.8 A1 0 0 1 1 A0 0 1 0 1 Y3 0 0 0 1 Y2 0 0 1 0 Y1 0 1 0 0 Y0 1 0 0 0 8.2 40 9 . : . , - . : 1. 2. 3. . . . 4. 5. . . . , , .). , , , . 2 , ( , 5( ), , . . – , - . , - . , , , , . , , . – - . . 9.1. , , , - . . 9.1 – . 41 9.2 . 9.3 X3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 X2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 X1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 X0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Y3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Y2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 Y1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 Y0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 9.1 42 , : . ; , : - . , . . 9.4 . X2 0 0 0 0 1 1 1 1 9.5 X1 0 0 1 1 0 0 1 1 X0 0 1 0 1 0 1 0 1 Y2 0 0 0 0 1 1 1 1 Y1 0 0 1 1 1 1 0 0 Y0 0 1 1 0 0 1 1 0 9.2 43 10 . : . , - . : 1. 2. 3. . . . 4. 5. . . . - , , . . : A=B – A>B – A<B – ; ; . 10.1 . ( , ) . , . . : A=B = a b ab ; A>B = a b ; A<B = a b ; 44 10.2 10.3 A 0 0 1 1 B 0 1 0 1 A>B A=B A<B 0 1 0 0 0 1 1 0 0 0 1 0 10.1 45 10.4 10.5 A1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 B1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 B0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 A>B A=B A<B 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 10.2 46 , , . - B3-B0 , . B :A+(-B)=A+B ), , . 10.6 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 OUT0 IN0 IN1 IN2 B3/ B2/ B1/ B0/ A3/ A2/ A1/ A0/ 32 22 12 02 31 21 11 01 A>B A=B A<B HEX - - 47 11 . : . , - . : 1. 2. 3. . . . 4. 5. . . , . , . . , . . , , . ( ). , – . , – - , . ( ). - . , - . . , , «1 N» . ( ) ( ), ( ). . , . , - . : ; . – , - . ( ), - fmax. ( ) , J=K=1 Qn-1Qn-2…Q0, JK, . . , M=2n, n– ( , , - 0, 1, 2, 3, …, M-1). 48 . , . -1. – , , - . : 0101010101… . 001100110011…. . : 0000111100001111… , . , , . . , , , - . , . - , , , . , . 1-0, – 0-1. , . , . , - . , . « ». , . . - . 2, . , , . n=round(log1M), round – . 2n. . 2n , =L ( ) - . , - . , , . . , - . , - . , , . , , . . -1. . , . . 49 , ) . . « », ( ). . , . . . , , - . 50 11.1 8 . 11.2 8 . - 0 1 2 3 4 5 … 250 251 252 253 254 255 256 257 258 Q7 0 0 0 0 0 0 … 1 1 1 1 1 1 0 0 0 Q6 0 0 0 0 0 0 … 1 1 1 1 1 1 0 0 0 Q5 0 0 0 0 0 0 … 1 1 1 1 1 1 0 0 0 11.1 Q4 0 0 0 0 0 0 … 1 1 1 1 1 1 0 0 0 Q3 0 0 0 0 0 0 … 1 1 1 1 1 1 0 0 0 8 Q2 0 0 0 0 1 1 … 0 0 1 1 1 1 0 0 0 Q1 0 0 1 1 0 0 … 1 1 0 0 1 1 0 0 1 Q0 0 1 0 1 0 1 … 0 1 0 1 0 1 0 1 0 - . 51 11.3 8 . 11.4 8 . - 0 1 2 3 4 5 … 250 251 252 253 254 255 256 257 258 Q7 0 1 1 1 1 1 … 0 0 0 0 0 0 1 1 1 Q6 0 1 1 1 1 1 … 0 0 0 0 0 0 1 1 1 Q5 0 1 1 1 1 1 … 0 0 0 0 0 0 1 1 1 11.2 Q4 0 1 1 1 1 1 … 0 0 0 0 0 0 1 1 1 Q3 0 1 1 1 1 1 … 0 0 0 0 0 0 1 1 1 8 Q2 0 1 1 1 1 0 … 1 1 0 0 0 0 1 1 1 Q1 0 1 1 0 0 1 … 0 0 1 1 0 0 1 1 0 Q0 0 1 0 1 0 1 … 1 0 1 0 1 0 1 0 1 - . 52 =150(0-149). – 8 (2 =256), 8 , - 8 , 150, 150, , 0, . , 150 (100101102) R - «0». 11.5 11.6 =150 =150 - 0 1 2 3 4 5 … 147 148 149 150 151 152 153 154 155 Q7 0 0 0 0 0 0 … 1 1 1 0 0 0 0 0 0 Q6 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 Q5 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 Q4 0 0 0 0 0 0 … 1 1 1 0 0 0 0 0 0 Q3 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 Q2 0 0 0 0 1 1 … 0 1 1 0 0 0 0 1 1 Q1 0 0 1 1 0 0 … 1 0 0 0 0 1 1 0 0 Q0 0 1 0 1 0 1 … 1 0 1 0 1 0 1 0 1 11.3 =150 53 =150(150-1). – 8 (2 =256), 8 , - 8 , , 150 (100101102), S , 0 0 (000000002) . 7,4,2,1 150, R , 6,5,3,0 =150 , - «1», 11.7 11.8 , =150 - 0 1 2 3 4 5 … 147 148 149 150 151 152 153 154 155 Q7 1 1 1 1 1 1 … 0 0 0 1 1 1 1 1 1 Q6 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 Q5 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 Q4 1 1 1 1 1 1 … 0 0 0 1 1 1 1 1 1 Q3 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 Q2 1 1 1 0 0 0 … 0 0 0 1 1 1 0 0 0 Q1 1 0 0 1 1 0 … 1 1 0 1 0 0 1 1 0 Q0 0 1 0 1 0 1 … 1 0 1 0 1 0 1 0 1 11.4 =150 54 . . , , - . (m=8), 16 , . , . 2m (m m- ) . “D” , , - . 11.9. D, “D” “0”, . Q0=Q1=…=Q7. , . “1”. “1”, - , “1”. , “0” “0”. “D” “1”. , . “ 11.9 - , ”, “ ”. 8 55 11.10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Q7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 11.5 8 Q6 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 Q5 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 Q4 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 Q3 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 Q2 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 Q1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Q0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 8 56 11.11 C2 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 Q2 0 1 1 1 1 0 0 0 Q1 0 1 1 0 0 1 1 0 Q0 0 1 0 1 0 1 0 1 0 1 2 3 4 5 6 7 ) Q2 0 0 0 0 1 1 1 1 Q1 0 0 1 1 0 0 1 1 Q0 0 1 0 1 0 1 0 1 ) 11.5 2=0 ( 2=1 ( ) ) C2 0 1 1 1 1 1 1 1 ) ) C3 C1 C2 IN7 IN6 IN5 IN4 IN3 IN2 IN1 IN0 R/ C/ Q7/ Q6/ Q5/ Q4/ Q3/ Q2/ Q1/ Q0/ - /1..127 7 6 5 4 3 2 1 0 57 12 . : . , - . : 1. 2. 3. . . . 4. 5. . . , - , . . , , . . , 12.1 ) : «1» - a b . a + b, - , (Ci) : (C) ) 12.1 – (S) «1» - . ) ) ) «1» . - «1» . . ( 12.1 )). - . , , . . , - , , , . , 58 , , : , 0 - 9. 12.2 A 0 0 1 1 0 0 1 1 12.3 B 0 1 0 1 0 1 0 1 Pi 0 0 0 0 1 1 1 1 S 0 1 1 0 1 0 0 1 P 0 0 0 1 0 1 1 1 12.1 59 12.4 12.5 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 OUT0 IN0 IN1 IN2 IN3 IN4 B3/ B2/ B1/ B0/ A3/ A2/ A1/ A0/ 32 22 12 02 31 21 11 01 S1 S2 S3 S4 S5 HEX - - 60 61