Задачи по информатике с решениями

Примеры задач с
решениями
Задача 1
Задача 2
Задача 3
Задача 4
Задача 5
Задача 6
Задача 7
Задача 8
Задача 9
Задача 10
Задача 1.
Два текста содержат одинаковое количество
символов. Первый текст составлен в
алфавите мощностью 16 символов.
Второй текст в алфавите мощностью 256
символов. Во сколько раз количество
информации во втором тексте больше,
чем в первом?
Решение
Задача 2
Мощность алфавита равна 256.
Сколько Кбайт памяти потребуется
для сохранения 160 страниц текста,
содержащего в среднем 192
символа на каждой странице?
Решение
Задача 3
Сколько различных
последовательностей длинной в 7
символов можно составить из цифр
0 и 1?
Решение
Задача 4
Объем сообщения равен 11 Кбайт.
Сообщение содержит 11264
символа. Какова мощность
алфавита?
Решение
Задача 5
Какое количество информации будет
получено вторым игроком в игре
«Крестики-нолики» на поле 4×4
после первого хода первого игрока?
Решение
Задача 6
Для кодирования секретного
сообщения используются 12
специальных символов (значков).
При этом символы кодируются одним
и тем же минимально возможным
количеством бит. Чему равен
информационный объем сообщения
длиной в 256 символов?
Решение
Задача 7
Объем сообщения содержащего 4096
символов составил 1/512 часть
Мегабайта. Какова мощность
алфавита, с помощью которого
записано это сообщение?
Решение
Задача 8
Объем сообщения 7,5 Килобайт.
Известно, что данное сообщение
содержит 7680 символов. Какова
мощность алфавита?
Решение
Задача 9
Мощность алфавита равна 64.
Сколько Кбайт памяти потребуется,
чтобы сохранить 128 страниц
текста, содержащего в среднем 256
символов на каждой странице?
Решение
Задача 10
Для кодирования секретного сообщения
используются 7 значков – обозначений
нот. При этом каждый значок-нота
кодируется одним и тем же минимально
возможным количеством бит. Чему равен
информационный объем такого
сообщения, состоящего из 180 нот.
Решение
Решение
к
задаче
1
Если первый текст составлен в алфавите
мощностью (N) 16 символов, то количество
информации, которое несет 1 символ (i) в
этом тексте, можно определить из
соотношения: N = 2i, таким образом из 16
= 2i получим i = 4 бита.
Мощность второго алфавита – 256 символов,
из 256 = 2i получим i = 8 бит.
Т.к. оба текста содержат одинаковое
количество символов, количество
информации во втором тексте больше, чем
в первом, в 2 раза.
Ответ: в 2 раза
Решение к задаче 2
Из формулы N = 2I (где N = 256) найдем
количество бит (I), необходимое для
кодирования одного символа в алфавите:
256 = 2I , отсюда I = 8 бит = 1 байт.
Всего символов в тексте 192 × 160 = 30720.
Для хранения такого количества
символов потребуется 30720 байт, или в
Килобайтах: 30720 : 1024 = 30.
Ответ: 30 Килобайт
Решение к задаче 3
Количество возможных последовательностей
определяется по формуле:
N = 2I, где I – количество информации
Поскольку в двухсимвольном алфавите каждый
символ несет 1 бит информации,
последовательность длиной в 7 символов
будет содержать 7 бит информации.
Поэтому N = 27 = 128.
Ответ: 128 различных
последовательностей
Решение к задаче 4
Вычислим количество бит, необходимое для
кодирования одного символа:
(11 × 1024 × 8) : 11264 = 8 (бит).
Тогда мощность алфавита будет равна
N = 28 = 256.
Ответ: 256 символов
Решение к задаче 5
Перед первым ходом существуют 16 (4×4)
различных вариантов расположения
«крестика» на игровом поле, поэтому
количество информации I можно найти из
уравнения: 16 = 2I. Откуда I = 4. Таким
образом, после первого хода первого
игрока второй игрок получит 4 бита
информации.
Ответ: 4 бита
Решение к задаче 6
Для кодирования каждого из 12
различных символов потребуется
минимум 4 бита. Тогда
информационный объем сообщения
длиной в 256 символов будет
равен: 256 × 4 = 1024 бита = 128
байт.
Ответ: 128 байт
Решение к задаче 7
Переведем информационный объем
сообщения в биты:
1/512 часть Мегабайта = (1/512 × 1024 ×
1024 × 8) бит = 16384 бит
Подсчитаем количество бит для кодирования
одного символа:
I = 16384 бит : 4096 = 4 бита
Тогда мощность алфавита (количество
символов в алфавите):
N = 2I = 24 = 16.
Ответ: 16 символов
Решение к задаче 8
Переведем информационный объем
сообщения в биты:
7,5 Килобайт = (7,5×1024×8) бит =
61440 бит
Подсчитаем количество бит для
кодирования одного символа:
I = 61440 бит : 7680 = 8 бит
Тогда мощность алфавита (количество
символов в алфавите) равна:
N = 2I = 28 = 256.
Ответ: 256 символов
Решение к задаче 9
Из формулы N = 2I (где N = 64) найдем
количество бит (I), необходимое для
кодирования одного символа в алфавите: 64
= 2I , отсюда I = 6 бит.
Всего символов в тексте
256 × 128 = 32768.
Для хранения такого количества символов
потребуется
32768 × 6 = 196608 бит = 24576 байт = 24
Кбайта.
Ответ: 24 Килобайта
Решение к задаче 10
Для кодирования одной ноты
потребуется минимум 3 бита (т.к.
нот 7). Тогда информационный
объем сообщения длиной в 180 нот
будет равен:
180 × 3 = 540 бит.
Ответ: 540 бит