Пояснительная записка Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования. Практическая значимость курса «Решение нестандартных задач» обусловлена тем, что его объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при решении нестандартных задач способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников. Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе. Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, решение нестандартных задач развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников. Изучение курса «Решение нестандартных задач» позволяет формировать умения и навыки умственного труда - планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе изучения курса «Решение нестандартных задач» школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей. Важнейшей задачей школьного курса «Решение нестандартных задач» является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым «Решение нестандартных задач» занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, «Решение нестандартных задач» вносит значительный вклад в эстетическое воспитание учащихся.Методической особенностью курса является расширение традиционных тем за счет теоретико-множественной и историко-культурной линий.Обращение к теоретико-множественному подходу в изложении некоторых вопросов связано с удобством введения функции как соответствия между множествами, равносильности уравнений и т.п. Общая характеристика учебного предмета Цели обучения математике в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Исторически сложились две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определенным методом познания и преобразования мира математическим методом. Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения - от простейших, усваиваемых в непосредственном опыте людей, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие научных знаний, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, пользоваться общеупотребительной вычислительной техникой, находить в справочниках и применять нужные формулы, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др. Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И, наконец, все больше специальностей, требующих высокого уровня образования, связаны с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и многое другое). Таким образом, расширяется круг школьников, для которых математика становится профессионально значимым предметом. Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач - основной учебной деятельности на уроках математики - развиваются творческая и прикладная стороны мышления. Использование в математике наряду с естественным нескольких математических языков дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства. Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в ее современном толковании является общее знакомство с методами познания действительности, что включает понимание диалектической взаимосвязи математики и действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Изучение математики развивает воображение, пространственные представления. История развития математического знания дает возможность пополнить запасы историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека. В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включен дополнительный методологический раздел - множества. Содержание разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия - «Множества» - служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая «Математика в историческом развитии» - способствует созданию общекультурного, гуманитарного фона изучения курса. Содержание линии «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в 7 классе связано с рациональными числами. Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений. Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры. Раздел «Вероятность и статистика» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности - умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления. Цели и задачи изучения курса «Решение нестандартных задач» На основании требований Государственного образовательного стандарта в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения: сформировать практические навыки выполнения устных, инструментальных вычислений, развить вычислительную культуру; письменных, - овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач; - изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей; - развить логическое мышление и речь - умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства; - сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений. СОДЕРЖАНИЕ КУРСА АРИФМЕТИКА -1 час 1. Рациональные числа. Расширение множества натуральных чисел до множества целых. Множества целых чисел до множества рациональных. Рациональное число как отношение, где т - целое число, п - натуральное. АЛГЕБРА – 8 часов 1.Уравнения. - Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. -. Линейное уравнение. Равносильность уравнений.Решение уравнений, сводящихся к линейным. Уравнения с параметрами. Уравнения, содержащие переменную под знаком модуля. - Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.Система уравнений с двумя переменными. Равносильность систем. Системы трех линейных уравнений с двумя переменными; решение подстановкой и сложением. Системы двух линейных уравнений с двумя переменными, содержащие параметры. - Решение текстовых задач алгебраическим способом. - Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности и перпендикулярности прямых. Графики простейших нелинейных уравнений: парабола, кубическая парабола. Графическая интерпретация систем уравнений с двумя переменными. ФУНКЦИИ – 8 часов 1.Основные понятия. - Зависимости между величинами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы. - Числовые функции. Функции, описывающие прямую пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства.График функции, содержащий модуль. График функции, содержащей параметр. СТАТИСТИКА – 1 час Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость МНОЖЕСТВА – 2часа -Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств. -Иллюстрация отношений между множествами с помощью диаграмм Эйлер-Венна. Календарно – тематическое планирование № п.п 1. 2. 3. 4. 5. 6. 7. 8. тема Арифметика Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. Линейное уравнение. Равносильность уравнений. Решение уравнений, сводящихся к линейным. Уравнения с параметрами. Уравнения, содержащие переменную под знаком модуля. Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах. Система уравнений с двумя переменными. Равносильность систем. Системы трех линейных уравнений с двумя переменными; решение подстановкой и сложением. Системы двух линейных уравнений с двумя переменными, содержащие параметры. .Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности и перпендикулярности прямых. Графики простейших нелинейных уравнений: парабола, кубическая парабола. Графическая интерпретация систем уравнений с двумя переменными. Зависимости между величинами. Понятие Количество Сроки часов проведения 1 1 1 2 2 1 1 2 9. 10. 11. 12. 13. 14. 15. функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы. Числовые функции. Функции, описывающие прямую пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. График функции, содержащий модуль. График функции, содержащей параметр. Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлер-Венна. итого 1 1 2 2 1 1 1 20 Литература 1. Альхова З. Н., Макеева А. В. Внеклассная работа по математике. – Саратов: Лицей, 2004. 2. Абрамович М. И., Стародубцев М. Т. Математика (алгебра и элементарные функции). Учебное пособие. – М., Высшая школа, 1976. 3. Бабинская И. Л. Задачи математических олимпиад. - М.:Наука, 1975. 4. Бернштейн Е. А., Пушкарь Е. Е. Методические разработки для экспериментального курса математического отделения. Учебное пособие для учащихся ОЛ ВЗМШ при МГУ им. Ломоносова. – М.: 2004. 5. Галицкий М. Л. и др. Сборник задач по алгебре для 8 – 9 классов. – М.: Просвещение, 1992. 6. Горбачёв Н. В. Сборник олимпиадных задач по математике. – М.: МЦНМО, 2004. 7. Ляпин Е. С., Евсеев А. Е. Алгебра и теория чисел, ч. 1.Числа. Учебное пособие для студентов физ.– мат. фак-тов. пед. ин-тов.- М.: Просвещение, 1974. 8. Мочалов В. В., Сильвестров В. В. Уравнения и неравенства с параметрами: Учебное пособие. – 2-е изд., доп., перераб. –Чебоксары: Изд-во Чуваш.ун-та, 2000. 9.Сикорский К. П. Дополнительные главы по курсу математики 7 – 8 классов для факультативных занятий. Пособие для учащихся. М.: Просвещение, 1969. 10.Спивак А. В. Тысяча и одна задача по математике: кн. для учащихся 5 – 7 кл. – 2-ое изд. - М.: Просвещение, 2005. 11. Сборник конкурсных задач по математике для поступающих во втузы. Учебное пособие. Под ред. М. И. Сканави. - 3-е изд., доп. – М.: Высшая школа, 1978.