Стереометрия ТЕМА: 2.6 ЦИЛИНДР.СЕЧЕНИЕ ЦИЛИНДРА. АК ВГУЭС Преподаватель БОЙКО ВЕРА ИВАНОВНА специальности: 08011051 «Банковское дело» 10110151 «Гостиничный сервис» 080110151 «Сервис домашнего и коммунального хозяйства» 10080151 «Товароведение и экспертиза качества потребительских товаров» 3 Требования к знаниям, умениям и навыкам В результате изучения лекции студент должен знать: * Представление о цилиндрической поверхности. * Определение цилиндра и его изображение . * Элементы цилиндра. Свойства элементов. *Цилиндр как тело вращения. * Виды сечений. * Формулы площадей боковой и полной поверхностей, объем цилиндра. В результате изучения лекции студент должен уметь: ■ Изображать цилиндр. ■ Решать задачи на построение сечений цилиндра. ■ Решать задачи на нахождение площадей и объемов цилиндра. Содержание: 1.Понятие цилиндрической поверхности. 2. Определение цилиндра, его элементов. 3.Изображение цилиндра. 4.Сечения цилиндра. 5. Формулы площадей боковой и полной поверхностей, объем цилиндра. Общая цилиндрическая поверхность, её направляющая L и образующая m L m • Рассмотрим две 1.Понятие параллельные плоскости и цилиндрической окружность,расположен поверхности ную в одной из плоскостей. Через цилиндра. каждую точку окружности проведем прямую, перпендикулярную к данной плоскости. Отрезки этих прямых, заключенные между плоскостями, образуют цилиндрическую поверхность. Цилиндр -тело, ограниченное цилиндрической поверхностью и двумя кругами с границами L и L1 Слово «Цилиндр» происходит от греческого слова «Kylindros» - килиндрос, то есть «вращаю», «катаю», «валик», «свиток» . Наклонный круговой цилиндр круг Н радиус (r) основание О1 боковая поверхность oбразующая (H) О основание ось цилиндра Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон. Равносторонний цилиндр. • Высота цилиндра равна диаметру основания. • Осевое сечениеквадрат. С О1 В Осевое сечение цилиндра О А D B1 О1 А1 О B А Сечение цилиндра плоскостью, параллельной его оси О1 Сечение цилиндра плоскостью, перпендикулярной его оси О2 О О1 Сечение цилиндра плоскостью, наклоненной под углом к его оси О Касательная плоскость цилиндра - это плоскость проходящая через образующую цилиндра и перпендикулярная плоскости осевого сечения, содержащей эту образующую С 2R R О1 О1 H So R 2 Sб 2R H О S п 2R H 2R 2R ( H R) 2 О R Площадь поверхности цилиндра Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту цилиндра. A O Площадью полной поверхности цилиндра является сумма площадей боковой поверхности и двух оснований Sполн. = Sбок. + 2Sосн. B (Sбок.= 2ПRH) (Sосн. = ПR²) h h h r r r Объем цилиндра равен произведению площади основания на высоту. V = πr²h. Найдите диагональ осевого сечения цилиндра ,если радиус цилиндра равен 1,5м,а высота – 4м. h 2r Диагональ осевого сечения цилиндра равна 48 см.Угол между этой диагональю и образующей цилиндра равен 60 градусов. Найдите: а)высоту цилиндра; б)радиус цилиндра;в)площадь основания цилиндра. h . 2r Вычислить, какую площадь трубы необходимо обмотать пленкой, если диаметр трубы 154см, длина 5 км. Решение: π=3 Sбок=2πRH=πdH=3·1,54·5000=2310 0(м2) Для двукратного покрытия трубы понадобится 23100·2=46200(м2) изоляционной пленки. Ответ: 46200 м2 Вычислить, какую площадь трубы необходимо обмотать пленкой, если диаметр трубы 76 см, длина 5 км. Решение: π=3 Sбок=2πRH=πdH=3·0,76·5000= 11400(м2) Для двукратного покрытия трубы понадобится 11400·2=22800(м2) изоляционной пленки. Ответ: 22800 м2 Осевое сечение цилиндра – квадрат, диагональ которого равна 20 см. Найдите: а) высоту цилиндра; б) So цилиндра Решение. B C 1. Проведем диагональ АС сечения АВСD. 2. ADC – равнобедренный, прямоугольный, АD=DC, h = 2r, 45 20 CAD = ACD=45, тогда 2 h AC cos 45 20 10 2 . 2 3. Найдем радиус основания 45 A D 4. Найдем площадь основания Ответ: а)10 2 ; б )50 . h 10 2 r 5 2. 2 2 2 S o r 5 2 50 . 2 Площадь осевого сечения цилиндра равна 10 м2, а площадь основания – 5 м2. Найдите высоту цилиндра. C Решение. 1. Площадь основания – круг, B So r 2 , тогда r S 5 . 2. Площадь сечения – прямоугольник, Sc AB BC h 2r , тогда D A r Sc 5 h 10 2 5 5 . 2r 5 Ответ: 5 . Концы отрезка АВ лежат на разных основаниях цилиндра. Радиус цилиндра равен r, его высота – h, расстояние между прямой АВ и осью цилиндра равно d. Найдите: a) высоту, если r = 10, d = 8, AB = 13. В Решение. 1. Построим отрезок АВ. 2. Проведем радиус АО. 3. Построим отрезок d. 4. Отрезок ОК – искомое расстояние. 5. Из прямоугольного АОК находим: a AK r 2 d 2 100 64 6, С К А значит АС = 12. 6. Из прямоугольного АВС находим: d r ВС АВ 2 АС 2 169 144 5. r Итак, h = 5. Ответ: 5. Вопросы для самопроверки • Что такое цилиндр, его поверхность? • Назвать основные элементы цилиндра. • Как можно получить цилиндр? • Какие фигуры можно получить в сечении цилиндра? • Назвать формулы площадей боковой и полной поверхностей, объем цилиндра • Где в жизни встречается цилиндр? 33 Используемая литература: 1. Геометрия: Учебник для средней школы. 10–11 классы./ Под ред. Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева и др. – М.: Просвещение, 2010. 2. Геометрия. 10 класс. Поурочные планы / Авт.-сост. Г.И. Ковалева – Волгоград: Учитель, 2011 3. Геометрия.10-11 классы И.М.Смирнова, В.А.Смирнов. Москва: Мнемозина, 2003